کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
76206 | 49134 | 2008 | 7 صفحه PDF | دانلود رایگان |

Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process.
Journal: Microporous and Mesoporous Materials - Volume 115, Issue 3, 1 November 2008, Pages 376–382