کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
76647 49146 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Expansion of the F127-templated mesostructure in aerosol-generated particles by using polypropylene glycol as a swelling agent
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Expansion of the F127-templated mesostructure in aerosol-generated particles by using polypropylene glycol as a swelling agent
چکیده انگلیسی

Expansion of the mesostructure in aerosol-generated particles was performed through incorporation of polypropylene glycol (PPG), a non-volatile swelling agent. TEOS was used as silica source and the Pluronic block copolymer, F127, as template. The ratio of TEOS to F127 was kept constant during synthesis, while varying the weight ratio of PPG to F127 systematically. The impact of the PPG on the expansion of the structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen adsorption. Different methods were used to calculate the pore size distributions, the BJH, the BdB-FHH, the KJS and the NLDFT method. Simple geometrical models of the expansion were derived to interpret the experimental data and establish their accuracy. Experimental data showed a roughly linear expansion of the unit cell and pore size, consistent with that expected by modelling the swelling of a hexagonal (p6mm) structure assuming constant wall thickness. The expansion is increasing as a function of increasing PPG/F127 ratio by about 25 Å. An expression of the density of the silica wall was calculated from the models resulting in a density of 1.95 ± 0.2 g/cm3. At a PPG/F127 ratio of approximately 0.31, the p6mm structure (found at lower PPG/F127 ratios) transforms to a microemulsion-templated foam structure. At an even higher PPG/F127 ratio (0.63–1.56), phase separation of the oil from the swollen template occurred, yielding a two-phase system of coexisting foam and large vesicles.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microporous and Mesoporous Materials - Volume 113, Issues 1–3, 1 August 2008, Pages 1–13
نویسندگان
, , , , ,