کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7673963 | 1495679 | 2016 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Temperature based segmentation for spectral data of laser-induced plasmas for quantitative compositional analysis of brass alloys submerged in water
ترجمه فارسی عنوان
تقسیم بندی بر پایه دما برای داده های طیفی پلاسما ناشی از لیزر برای تجزیه و تحلیل کمی ترکیبات آلیاژهای برنجی که در آب فرو می ریزند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
This study describes a method to quantify the composition of brass alloys submerged in water using laser-induced plasmas. Principal component regression (PCR) analysis and partial least squares (PLS) regression analysis are applied to spectral measurements of plasmas generated using a long-ns duration pulse. The non-linear effects of excitation temperature fluctuations on the signals are treated as systematic errors in the analysis. The effect of these errors on the analytical performance is evaluated by applying PCR and PLS with a temperature segmented database. The results of the analysis are compared to conventional methods that do not consider the excitation temperature and it is demonstrated that the proposed database segmentation improves accuracy, with root-mean square errors of prediction (RMSEP) of 2.7% and 2.8% for Cu and Zn in the PCR model and 2.9% and 1.8% for Cu and Zn in the PLS model, respectively. The results indicate that systematic effects contribute to fluctuation of underwater plasmas, where appropriate database segmentation can improve the performance of the PCR and PLS methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spectrochimica Acta Part B: Atomic Spectroscopy - Volume 124, 1 October 2016, Pages 87-93
Journal: Spectrochimica Acta Part B: Atomic Spectroscopy - Volume 124, 1 October 2016, Pages 87-93
نویسندگان
Tomoko Takahashi, Blair Thornton, Takumi Sato, Toshihiko Ohki, Koichi Ohki, Tetsuo Sakka,