کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7674568 1495701 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques
ترجمه فارسی عنوان
کمی عنصری غیر مخرب فیلم های نازک پلیمری تعبیه شده با استفاده از تکنیک اشعه ایکس آزمایشگاه بر اساس
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spectrochimica Acta Part B: Atomic Spectroscopy - Volume 101, 1 November 2014, Pages 320-329
نویسندگان
, , , , ,