کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
768687 | 1462996 | 2013 | 16 صفحه PDF | دانلود رایگان |

This study reports an experimental investigation of a fatigue-cracked, pre-notched circular hollow section X-joints fabricated from high strength steels (with the yield strength higher than 800 MPa) subjected to brace in-plane bending. The circular hollow section X-joint entails a prefabricated V-notch near the weld toe at the crown position. The experimental procedure applies a fatigue pre-cracking cyclic load followed by a monotonic brace in-plane bending, which leads to brittle through-thickness crack propagation after some amount of ductile tearing. The ductile tearing assessment, integrating the fracture resistance curve obtained from the small-scale fracture specimens and the crack extension in the large-scale tubular joint, predicts closely the load level at which unstable crack extension takes place. The generic level 2A curve outlined in the BS7910 provides an un-conservative estimate on the failure load of the X-joint specimen. The parametric numerical investigation reveals that the strength definition for the cracked joints imposes a significant effect on the shape of the failure assessment curve.
► We validate the ductile tearing assessment in a large-scale tubular joint.
► The level 2A failure assessment curve appears to be un-conservative for the tested specimen.
► The failure assessment curves for tubular joints depend strongly on the strength definition for cracked joints.
Journal: Engineering Failure Analysis - Volume 28, March 2013, Pages 176–191