کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
79912 | 49369 | 2009 | 4 صفحه PDF | سفارش دهید | دانلود رایگان |

In this work we analyse the effect of porous silicon on the performances of multicrystalline silicon (mc-Si) solar cells during the porous silicon-based gettering procedure. This procedure consists of forming PS layers on both front and back sides of the mc-Si wafers followed by an annealing in an infrared furnace under a controlled atmosphere at different temperatures. Three sets of samples (A, B and C) have been prepared; for samples A and B, the PS films were removed before and after annealing, respectively. In order to optimize the annealing temperature, we measure the defect density at a selected grain boundary (GB) using the dark current–voltage (I–V) characteristics across the GB itself. The annealing temperature was optimized to 1000 °C. The effect of these treatments on the performances of mc-Si solar cells was studied by means of the current–voltage characteristic (at AM 1.5) and the internal quantum efficiency (IQE). The results obtained for cell A and cell B were compared to those obtained on a reference cell (C).
Journal: Solar Energy Materials and Solar Cells - Volume 93, Issue 10, October 2009, Pages 1823–1826