کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
80563 | 49390 | 2006 | 6 صفحه PDF | دانلود رایگان |

We have developed a high-rate plasma process based on high-pressure and silane-depletion glow discharge for highly efficient microcrystalline silicon (μc-Si:H) p–i–n junction solar cells. Under high-rate conditions (2–3 nm/s), we find that the deposition pressure becomes the dominant parameter in determining solar-cell performance. With increasing deposition pressure from 4 to 7–9 Torr, short-circuit current increases by ∼50% due to a remarkable improvement in quantum efficiencies at the visible and near infrared. As a result, the maximum efficiency of 9.13% has been achieved at an i-layer deposition rate of 2.3 nm/s. We attribute the improved performance of high-pressure-grown μc-Si:H solar cells to the structural evolution toward denser grain arrangement that prevents post-oxidation of grain boundaries.
Journal: Solar Energy Materials and Solar Cells - Volume 90, Issues 18–19, 23 November 2006, Pages 3199–3204