کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8074915 | 1521463 | 2015 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles
ترجمه فارسی عنوان
روش تخلیه مبتنی بر تبدیل موجک دیجیتال برای برآوردگر حالت پیشرفته باتری یک باتری لیتیوم یون در وسایل نقلیه الکتریکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
Sophisticated data of the experimental DCV (discharging/charging voltage) of a lithium-ion battery is required for high-accuracy SOC (state-of-charge) estimation algorithms based on the state-space ECM (electrical circuit model) in BMSs (battery management systems). However, when sensing noisy DCV signals, erroneous SOC estimation (which results in low BMS performance) is inevitable. Therefore, this manuscript describes the design and implementation of a DWT (discrete wavelet transform)-based denoising technique for DCV signals. The steps for denoising a noisy DCV measurement in the proposed approach are as follows. First, using MRA (multi-resolution analysis), the noise-riding DCV signal is decomposed into different frequency sub-bands (low- and high-frequency components, An and Dn). Specifically, signal processing of the high frequency component Dn that focuses on a short-time interval is necessary to reduce noise in the DCV measurement. Second, a hard-thresholding-based denoising rule is applied to adjust the wavelet coefficients of the DWT to achieve a clear separation between the signal and the noise. Third, the desired de-noised DCV signal is reconstructed by taking the IDWT (inverse discrete wavelet transform) of the filtered detailed coefficients. Finally, this signal is sent to the ECM-based SOC estimation algorithm using an EKF (extended Kalman filter). Experimental results indicate the robustness of the proposed approach for reliable SOC estimation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 83, 1 April 2015, Pages 462-473
Journal: Energy - Volume 83, 1 April 2015, Pages 462-473
نویسندگان
Seongjun Lee, Jonghoon Kim,