کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8131234 | 1523233 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local Texture Anisotropy as an Estimate of Muscle Quality in Ultrasound Imaging
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
آکوستیک و فرا صوت
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study introduces local pattern texture anisotropy as a novel parameter to differentiate healthy and disordered muscle and to gauge the severity of muscle impairments based on B-mode ultrasound images. Preliminary human results are also presented. A local pattern texture anisotropy index (TAI) was computed in one region of interest in the short head of the biceps brachii. The effects of gain settings and box sizes required for TAI computation were investigated. Between-day reliability was studied in patients with sporadic inclusion body myositis (nâ=â26). The ability of the TAI to discriminate dystrophic from healthy muscle was evaluated in patients with Duchenne muscular dystrophy and healthy controls (nâ=â16). TAI values were compared with a gray-scale index (GSI). TAI values were less influenced by gain settings than were GSI values. TAI had lower between-day variability (typical errorâ=â2.3%) compared with GSI (typical errorâ=â2.3% vs. 8.3%, respectively). Patients with Duchenne muscular dystrophy had lower TAIs than controls (0.76â±â0.06 vs. 0.87â±â0.03, respectively, pâ<0.05). At 40% gain, TAI values correlated with percentage predicted elbow flexor strength in inclusion body myositis (Râ=â0.63, pâ<0.001). The TAI may be a promising addition to other texture-based approaches for quantitative muscle ultrasound imaging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasound in Medicine & Biology - Volume 44, Issue 5, May 2018, Pages 1133-1140
Journal: Ultrasound in Medicine & Biology - Volume 44, Issue 5, May 2018, Pages 1133-1140
نویسندگان
Guillaume J.R. Dubois, Damien Bachasson, Lilian Lacourpaille, Olivier Benveniste, Jean-Yves Hogrel,