کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8132203 | 1523274 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم فضا و نجوم
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia 11.6°N,37.4°E. We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv-Ï2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 61, Issue 5, 1 March 2018, Pages 1193-1205
Journal: Advances in Space Research - Volume 61, Issue 5, 1 March 2018, Pages 1193-1205
نویسندگان
Abdu Mohammed Seid, Tesfahun Berhane, Lassi Roininen, Melessew Nigussie,