کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8132203 1523274 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
چکیده انگلیسی
We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia 11.6°N,37.4°E. We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv-χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 61, Issue 5, 1 March 2018, Pages 1193-1205
نویسندگان
, , , ,