کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8135174 1523517 2016 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure
چکیده انگلیسی
The Gruithuisen domes, situated on the western portion of the Imbrium basin rim, form three tall mountains (NW, Gamma, Delta) totaling ∼780 km3 in volume. The shapes of the domes are significantly different from that of mare-type domes elsewhere on the Moon. We use data from the Lunar Reconnaissance Orbiter (LRO) and Kaguya missions (LRO Lunar Orbiter Laser Altimeter, Lunar Reconnaissance Orbiter Camera, Diviner, and the Kaguya imager) to characterize the domes and assess models for their origin. The configuration of the domes (steep slopes, up to ∼18-20°) and their specific remote sensing characteristics (strong downturn in the UV, and results from the M3 and Diviner instruments) suggest that the domes formed by eruptions of highly viscous lava. The estimated surface volumes of the domes vary from ∼20 km3 (NW dome) to ∼290 km3 (Gamma dome) to ∼470 km3 (Delta dome). The domes occur on the portion of the Imbrium basin rim that is overlain by ejecta from the post-Imbrium Iridum crater. In some areas, relatively high albedo smooth volcanic plains are seen within the Iridum ejecta near the Gruithuisen domes, and low albedo mare deposits surround and embay the domes and Iridum crater. Dating of different units and features by crater counts indicates that impact melts from the Iridum basin are ∼3.9 Ga old, the domes Gamma and Delta are ∼3.8 Ga, and the ages of the plains near the domes vary from ∼2.3 to ∼3.6 Ga. A fresh impact crater exposes the internal structure of the Gamma dome. The most prominent features on the wall of the crater are rough, blocky layers that are typical of volcanic plains in the highlands and maria around the domes. The layers are interleaved with fine-grained materials of higher and lower albedo and the visible orientation of the layers changes over short (a few hundred meters) distances. These characteristics of the internal structure of the dome are consistent with eruptions of high viscosity lava (rough layers) that alternated with possible explosive activity (fine-grained materials). The spatial association of the Gruithuisen domes with the highland lava plains resembles the situation in which bimodal volcanism occur on Earth. The terrestrial association can be due to either fractional crystallization in basaltic magma reservoirs or remelting of high-silica crustal materials. In the first case, the evolved melts appear in later stages of volcanic activity and in the second case these melts are formed near the beginning of evolution of the magmatic systems. The age estimates of the Gruithuisen domes and the surrounding volcanic plains are more consistent with the crustal remelting scenario. However, remelting of primary anorthositic crust cannot readily produce the silica-rich melts and requires the presence of pre-existing granite-like materials. Formation of the domes by fractional crystallization avoids this difficulty but requires explanation of the older age of the domes relative to the volcanic plains in the surroundings. A third option is that the domes are unrelated genetically to the mare deposits.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 273, 15 July 2016, Pages 262-283
نویسندگان
, , ,