کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8136636 1523539 2015 74 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES
چکیده انگلیسی
We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (Ls = 70-80°) and latitudes (55-70°N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 ± 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 ± 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 ± 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70°N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities are dissimilar; TES profiles exhibit colder temperatures when TES water ice opacities are greater than those observed by MCS. Our comparisons reveal a possible systematic offset of TES and MCS temperatures at the highest altitudes resolved in the TES retrievals; TES temperatures are consistently colder than the corresponding MCS temperatures at pressures ⩽ 1 Pa (altitudes ⩾ 58 km). We otherwise find no evidence of systematic bias between TES limb sounding and MCS retrieved atmospheric quantities between 610 Pa and 1 Pa. Inter-annual variability is noted in comparisons of latitudinal temperature gradients from 55 to 70°N, in the amplitude of inversions linked with thermal tides in the middle atmosphere, and in the abundance and vertical distribution of water ice aerosols from 55 to 70°N during the aphelion season.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 251, 1 May 2015, Pages 26-49
نویسندگان
, , , , , , , , , ,