کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8137938 1523551 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hungaria asteroid family as the source of aubrite meteorites
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Hungaria asteroid family as the source of aubrite meteorites
چکیده انگلیسی
The Hungaria asteroids are interior to the main asteroid belt, with semimajor axes between 1.8 and 2 AU, low eccentricities and inclinations of 16-35°. Small asteroids in the Hungaria region are dominated by a collisional family associated with (434) Hungaria. The dominant spectral type of the Hungaria group is the E or X-type (Warner et al. [2009]. Icarus, 204, 172-182), mostly due to the E-type composition of Hungaria and its genetic family. It is widely believed the E-type asteroids are related to the aubrite meteorites, also known as enstatite achondrites (Gaffey et al. [1992]. Icarus, 100, 95-109). Here we explore the hypothesis that aubrites originate in the Hungaria family. In order to test this connection, we compare model Cosmic Ray Exposure ages from orbital integrations of model meteoroids with those of aubrites. We show that long CRE ages of aubrites (longest among stony meteorite groups) reflect the delivery route of meteoroids from Hungarias to Earth being different than those from main-belt asteroids. We find that the meteoroids from Hungarias predominantly reach Earth by Yarkovsky-drifting across the orbit of Mars, with no assistance from orbital resonances. We conclude that the CRE ages of aubrites are fully consistent with a dominant source at the inner boundary of the Hungaria family at 1.7 AU. From here, meteoroids reach Earth through the Mars-crossing region, with relatively quick delivery times favored due to collisions (with Hungarias and the inner main-belt objects). We find that, after Vesta, (434) Hungaria is the best candidate for an asteroidal source of an achondrite group.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 239, 1 September 2014, Pages 154-159
نویسندگان
, , ,