کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8292713 | 1536735 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Recirculating Th2 cells induce severe thymic dysfunction via IL-4/STAT6 signaling pathway
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Thymic involution happened early in life, but a certain ratio of activated CD4+ T cells will persistently recirculate into the thymus from the periphery and it have been suggested to be able to inhibit the development of embryonic thymocytes. Our present study was aimed to elucidate the specific mechanism how activated CD4+ T cells could influence upon developing thymocytes by using fetal thymic organ culture (FTOC) and kidney capsule transplantation. Our results demonstrated that Th2 cells were found to play a fundamental role in the inhibition of embryonic thymocyte development since a very low concentration of Th2 cells could obviously reduce the total number of thymocytes. And this effect was not tenable in other Th cell type. Notably, IL-4, the major cytokine secreted by Th2 cells, was suggested the key factor playing the inhibition role. In addition to reduced cell population, the proportion of double positive (DP) T cells was also heavily decreased. Furthermore, we demonstrated that it was the downstream effector signal transducer and activator of transcription 6 (STAT6) of IL-4 partially manipulate this inhibition. Together, these findings reveal a novel influence of Th2 cells re-entering the thymus on thymic involution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 501, Issue 1, 18 June 2018, Pages 320-327
Journal: Biochemical and Biophysical Research Communications - Volume 501, Issue 1, 18 June 2018, Pages 320-327
نویسندگان
Hui Shen, Chen Yin, Ya-Nan Gao, Xiao-Yan Pei, Xiu-Yuan Sun, Qing Ge, Wei Wang, Yu Zhang,