کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8293397 1536744 2018 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix
چکیده انگلیسی
Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 498, Issue 4, 15 April 2018, Pages 1052-1057
نویسندگان
, , , , , ,