کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8296362 | 1536764 | 2017 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hepatic ischemia/reperfusion (I/R) injury could arise as a complication of liver surgery and transplantation. No specific therapeutic strategies are available to attenuate I/R injury. NOD-, LRR-and CARD-containing 5 (NLRC5), a member of the NOD-like protein family, has been suggested to negatively regulate nuclear factor kappa B (NF-κB) through interacting with IKKα and blocking their phosphorylation. Dexmedetomidine (DEX) has been shown to attenuate liver injury. In the current study, we investigated the pre-treatment of DEX on hepatic I/R injury in wild type (WT) and NLRC5 knockout (NLRC5â/â) mice. Our results indicated that NLRC5â/â showed significantly stronger histologic damage, inflammatory response, oxidative stress and apoptosis after I/R compared to the WT group of mice, indicating the protective role of NLRC5 against liver I/R injury. Importantly, I/R-induced increase of NLRC5 was reduced by DEX pre-treatment. After hepatic I/R injury, WT and NLRC5â/â mice pre-treated with DEX exhibited attenuated histological disruption, and reduced pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and inducible nitric oxide synthase (iNOS), which was associated with the inactivated NF-κB pathway. Moreover, suppression of oxidative stress and apoptosis was observed in DEX-treated mice with I/R injury, probably through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2), reducing mitogen-activated protein kinases (MAPKs) and Caspase-3/poly (ADP-ribose) polymerase (PARP) pathways. In vitro, the results were further confirmed in WT and NLRC5â/â hepatocytes pre-treated with or without DEX. Together, the findings illustrated that lack of NLRC5 resulted in severer liver I/R injury, which could be alleviated by DEX pre-treatment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 493, Issue 2, 18 November 2017, Pages 1143-1150
Journal: Biochemical and Biophysical Research Communications - Volume 493, Issue 2, 18 November 2017, Pages 1143-1150
نویسندگان
Zong Chen, Tao Ding, Chuan-Gen Ma,