کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8319254 1539309 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transcriptome-wide analysis of differential gene expression in response to light:dark cycles in a model cnidarian
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Transcriptome-wide analysis of differential gene expression in response to light:dark cycles in a model cnidarian
چکیده انگلیسی
Animals respond to diurnal shifts in their environment with a combination of behavioral, physiological, and molecular changes to synchronize with regularly-timed external cues. Reproduction, movement, and metabolism in cnidarians have all been shown to be regulated by diurnal lighting, but the molecular mechanisms that may be responsible for these phenotypes remain largely unknown. The starlet sea anemone, Nematostella vectensis, has oscillating patterns of locomotion and respiration, as well as the molecular components of a putative circadian clock that may provide a mechanism for these light-induced responses. Here, we compare transcriptomic responses of N. vectensis when cultured under a diurnal lighting condition (12 h light: 12 h dark) with sea anemones cultured under constant darkness for 20 days. More than 3,000 genes (~13% of transcripts) had significant differences in expression between light and dark, with most genes having higher expression in the photoperiod. Following removal of the light cue 678 genes lost differential expression, suggesting that light-entrained gene expression by the circadian clock has temporal limits. Grouping of genes differentially expressed in light:dark conditions showed that cell cycle and transcription maintained diel expression in the absence of light, while many of the genes related to metabolism, antioxidants, immunity, and signal transduction lost differential expression without a light cue. Our data highlight the importance of diel light cycles on circadian mechanisms in this species, prompting new hypotheses for the role of photoreception in major biological processes, e.g., metabolism, immunity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics - Volume 26, June 2018, Pages 40-49
نویسندگان
, , , ,