| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8456931 | 1548786 | 2017 | 9 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Alternative Polyadenylation Patterns for Novel Gene Discovery and Classification in Cancer
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												miRNAsmRNASLRSAMPolyadenylationBFL3′ untranslated region - 3 منطقه غیر ترجمه3′UTR - 3'UTRPCA - PCAAlternative polyadenylation - polyadenylation جایگزینmessenger RNA - RNA messengerImmunohistochemistry - ایمونوهیستوشیمیIHC - ایمونوهیستوشیمیPrinciple component analysis - تجزیه و تحلیل اجزای اصلmicroRNAs - ریز آرانایpoly(A) - پلی (A)APA - چیEstrogen receptor - گیرنده استروژن
												موضوعات مرتبط
												
													علوم زیستی و بیوفناوری
													بیوشیمی، ژنتیک و زیست شناسی مولکولی
													تحقیقات سرطان
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we analyzed expression data for 1045 cancer patients and found a significant shift in usage of poly(A) signals in common tumor types (breast, colon, lung, prostate, gastric, and ovarian) compared to normal tissues. Using machine-learning techniques, we further defined specific subsets of APA events to efficiently classify cancer types. Furthermore, APA patterns were associated with altered protein levels in patients, revealed by antibody-based profiling data, suggesting functional significance. Overall, our study offers a computational approach for use of APA in novel gene discovery and classification in common tumor types, with important implications in basic research, biomarker discovery, and precision medicine approaches.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neoplasia - Volume 19, Issue 7, July 2017, Pages 574-582
											Journal: Neoplasia - Volume 19, Issue 7, July 2017, Pages 574-582
نویسندگان
												Oguzhan Begik, Merve Oyken, Tuna Cinkilli Alican, Tolga Can, Ayse Elif Erson-Bensan,