کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8496831 1552984 2006 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems
چکیده انگلیسی
In intensive aquaculture systems, ammonia-nitrogen buildup from the metabolism of feed is usually the second limiting factor to increase production levels after dissolved oxygen. The three nitrogen conversion pathways traditionally used for the removal of ammonia-nitrogen in aquaculture systems are photoautotrophic removal by algae, autotrophic bacterial conversion of ammonia-nitrogen to nitrate-nitrogen, and heterotrophic bacterial conversion of ammonia-nitrogen directly to microbial biomass. Traditionally, pond aquaculture has used photoautotrophic algae based systems to control inorganic nitrogen buildup. Currently, the primary strategy in intensive recirculating production systems for controlling ammonia-nitrogen is using large fixed-cell bioreactors. This option utilizes chemosynthetic autotrophic bacteria, Ammonia Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB), for the nitrification of ammonia-nitrogen to nitrite-nitrogen and finally to nitrate-nitrogen. In the past several years, zero-exchange management systems have been developed that are based on heterotrophic bacteria and have been promoted for the intensive production of marine shrimp. In this third pathway, heterotrophic bacterial growth is stimulated through the addition of organic carbonaceous substrate. At high carbon to nitrogen (C/N) feed ratios, heterotrophic bacteria will assimilate ammonia-nitrogen directly into cellular protein. This paper reviews these three ammonia removal pathways, develops a set of stoichiometric balanced relationships using half-reaction relationships, and discusses their impact on water quality. In addition, microbial growth fundamentals are used to characterize production of volatile and total suspended solids for autotrophic and heterotrophic systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquaculture - Volume 257, Issues 1–4, 30 June 2006, Pages 346-358
نویسندگان
, , ,