کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
85043 158920 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting the nutritive value of high moisture grain corn by near infrared reflectance spectroscopy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Predicting the nutritive value of high moisture grain corn by near infrared reflectance spectroscopy
چکیده انگلیسی

The aim of this study was to evaluate the potential use of near infrared reflectance (NIR) spectroscopy to predict the nutritive value of high moisture grain corn (HMC). Additionally the use of the jack-knifing as a method to reduce redundant wavelengths was explored when the calibration models were developed. The coefficient of determination in calibration (RCAL2) and the standard error in cross validation (SECV) were (RCAL2=0.90, SECV: 2.6%) for dry matter, (RCAL2=0.85, SECV: 0.52%) for crude protein, (RCAL2=0.90, SECV: 1.8%) for acid detergent fibre, (ADF), (RCAL2=0.91, SECV: 2.0%) for in vitro   organic matter digestibility (OMD), (RCAL2=0.84, SECV: 0.33%) for ash, (RCAL2=0.91, SECV: 0.3%) for pH and (RCAL2=0.90, SECV: 1.07%) for ammonia nitrogen (N), respectively. The results from this study suggested that dry matter, acid detergent fibre and in vitro organic matter digestibility were accurately predicted using NIR spectroscopy in HMC samples. The use of the jack-knifing method improved the calibration models obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 67, Issues 1–2, June–July 2009, Pages 59–63
نویسندگان
, , , , ,