کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
86131 159168 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining
ترجمه فارسی عنوان
کود مکعب فسفر و گونه های بزرگ بوته ای پس از معدن بوکسیت از احیای جنگل جارا جلوگیری می کنند
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی


• Applied phosphorus (P) increased legume growth and weed and ephemeral abundance.
• Large legumes and P combined reduced non legume diversity and abundance.
• Above 20 kg ha−1, applied-P provided no further benefit for tree growth.
• Moderation in use of P and large legumes is optimal for jarrah forest restoration.

Re-establishing nutrient-cycling is often a key goal of mine-site restoration. This goal can be achieved by applying fertilisers (particularly P) in combination with seeding N-fixing legumes. However, the effect of this strategy on other key restoration goals such as the establishment and growth of non-leguminous species has received little attention. We investigated the effects of P-application rates either singly, or in combination with seeding seven large understorey legume species, on jarrah forest restoration after bauxite mining. Five years after P application and seeding, legume species richness, density and cover were higher in the legume-seeded treatment. However, the increased establishment of legumes did not lead to increased soil N. Increasing P-application rates from 0 to 80 kg P ha−1 did not affect legume species richness, but significantly reduced legume density and increased legume cover: cover was maximal (∼50%) where 80 kg P ha−1 had been applied with large legume seeds. Increasing P-application had no effect on species richness of non-legume species, but increased the density of weeds and native ephemerals. Cover of non-legume species decreased with increasing P-application rates and was lower in plots where large legumes had been seeded compared with non-seeded plots. There was a significant legume × P interaction on weed and ephemeral density: at 80 kg P ha−1 the decline in density of these groups was greatest where legumes were seeded. In addition, the decline in cover for non-legume species with increasing P was greatest when legumes were seeded. Applying 20 kg P ha−1 significantly increased tree growth compared with tree growth in unfertilised plots, but growth was not increased further at 80 kg ha−1 and tree growth was not affected by seeding large legumes. Taken together, these data indicate that 80 kg ha−1 P-fertiliser in combination with (seeding) large legumes maximised vegetation cover at five years but could be suboptimal for re-establishing a jarrah forest community that, like unmined forest, contains a diverse community of slow-growing re-sprouter species. The species richness and cover of non-legume understorey species, especially the resprouters, was highest in plots that received either 0 or 20 kg ha−1 P and where large legumes had not been seeded. Therefore, our findings suggest that moderation of P-fertiliser and legumes could be the best strategy to fulfil the multiple restoration goals of establishing vegetation cover, while at the same time maximising tree growth and species richness of restored forest.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Forest Ecology and Management - Volume 354, 15 October 2015, Pages 10–17
نویسندگان
, , , , , ,