کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
866498 | 1470976 | 2014 | 6 صفحه PDF | دانلود رایگان |

• Target recycling and RCA are integrated into one assay protocol to achieve dual signal amplification.
• The hybrid, dual signal amplification strategy leads to the generation of numerous G-quadruplex/hemin complexes.
• Direct electron transfer from hemin to the sensing electrode results in significantly amplified analytical current response.
• The proposed method offers excellent single-base mismatch discrimination capability.
Based on nicking endonuclease (NEase)-assisted target recycling and rolling circle amplification (RCA) for in situ generation of numerous G-quadruplex/hemin complexes, we developed a new, dual amplified and ultrasensitive electrochemical biosensor for mutant human p53 gene. The target mutant DNA hybridizes with the loop portion of a dithiol-modified hairpin probe (HP) self-assembled on a gold sensing electrode and forms nicking site for the NEase, which cleaves the HP and releases the target DNA. The released target DNA again hybridizes with the intact HP and initiates the DNA recycling process with the assistance of the NEase, leading to the cleavage of a large number of the HPs and the generation of numerous primers for RCA. With rationally designed, G-quadruplex complementary sequence-encoded RCA circular template, subsequent RCA results in the formation of long DNA sequences with massive tandem-repeat G-quadruplex sequences, which further associate with hemin and generate significantly amplified current response for highly sensitive DNA detection down to 0.25 fM. The developed method also exhibits high specificity for the target DNA against single-base mismatched sequence. With the ultrahigh sensitivity feature induced by the dual signal amplification, the proposed method can thus offer new opportunities for the detection of trace amounts of DNA.
Journal: Biosensors and Bioelectronics - Volume 55, 15 May 2014, Pages 266–271