کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
866565 1470980 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Au–ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes
ترجمه فارسی عنوان
مایعات یونیک فعال، پلاتین ایمونوسنزین گرافین اکسید را کاهش داده و برای تشخیص همزمان الکتروشیمیایی چندین آنالیته
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


• Au–ionic liquid functionalized reduced graphene oxide nanocomposite was prepared.
• Ionic liquid functionalized reduced graphene oxide was densely covered with AuNPs.
• The prepared nanocomposite was used to fabricate electrochemical immunosensor.
• The simultaneous detection of multiple targets of cancer biomarker was realized.

In this work, an Au–ionic liquid functionalized reduced graphene oxide nanocomposite (IL-rGO–Au) was fabricated via the self-assembly of ionic liquid functionalized reduced graphene oxide (IL-rGO) and gold nanoparticles (AuNPs) by electrostatic interaction. The IL-rGO can be synthesized and stabilized by introducing the cations of the amine-terminated ionic liquids (IL-NH2) into the graphene oxide (GO). With the assistance of IL-NH2, AuNPs were uniformly and densely absorbed on the surfaces of the IL-rGO. The proposed IL-rGO–Au nanocomposite can be used as an immunosensing platform because it can not only facilitate the electrons transfer of the electrode surface but also provide a large accessible surface area for the immobilization of abundant antibody. To assess the performance of the IL-rGO–Au nanocomposite, a sandwich-type electrochemical immunosensor was designed for simultaneous multianalyte detection (carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) as model analytes). The chitosan (CS) coated prussian blue nanoparticles (PBNPs) or cadmium hexacyanoferrate nanoparticles (CdNPs) and loaded with AuNPs were used as distinguishable signal tags. The resulting immunosensor exhibited high selectivity and sensitivity in simultaneous determination of CEA and AFP in a single run. The linear ranges were from 0.01 to 100 ng mL−1 for both CEA and AFP. The detection limits reached 0.01 ng mL−1 for CEA and 0.006 ng mL−1 for AFP, respectively. No obvious nonspecific adsorption and cross-talk was observed during a series of analyses to detect target analytes. In addition, for the detection of clinical serum samples, it is well consistent with the data determined by the ELISA, indicating that the immunosensor provides a possible application for the simultaneous multianalyte determination of CEA and AFP in clinical diagnostics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 51, 15 January 2014, Pages 184–190
نویسندگان
, ,