کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
868187 | 909803 | 2011 | 6 صفحه PDF | دانلود رایگان |

In this work, we present a simple and effective method to fabricate distance-controllable, Au nanorod (AuNR) chips thorough electrostatic assembly. Cetyltrimethylammonium bromide (CTAB)-capped AuNRs were immobilized on a hydroxyl-functionalized glass substrate by immersion of the glass into AuNR-suspension. The electrostatic surfacial assembly of AuNRs offers significant advantages over conventional thiol-induced chemistry, i.e., direct control of self-assembly of AuNRs, easy fabrication in ambient environment and most importantly, broad range of tunable inter-particle distance, ranging from 0.25 to 10 μm. The mechanism of time-dependant deposition process of AuNRs was described via competitive bindings of AuNRs and free CTAB molecules in AuNR-suspension. In addition, the electrostatically anchored AuNRs on a glass substrate provide sufficient stability under harsh experimental conditions with flow of basic/acidic solutions and organic solvents with different polarity. The feasibility of the AuNR-chips fabricated by the proposed method for single-nanoparticle plasmonic biosensors was demonstrated by the plasmonic measurement of aptamer–thrombin binding event. The corresponding limit of detection of thrombin molecule was found to be ∼278 pM based on the signal to noise ratio of 4.
Journal: Biosensors and Bioelectronics - Volume 26, Issue 5, 15 January 2011, Pages 2246–2251