کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
868664 | 909811 | 2009 | 4 صفحه PDF | دانلود رایگان |

Zinc oxide nanorod-extended gate field effect transistor (MOSFET) is demonstrated for the detection of calcium (Ca2+) ions. ZnO nanorods were grown on the surface of a silver wire to produce an electrochemical nanosensor for selectively detecting Ca2+. The electrochemical response from the interaction between the ZnO nanorods and Ca2+ in an aqueous solution is coupled directly to the gate of a field effect transistor (MOSFET). The induced voltage change on the gate results in a measureable current response. In order to adapt the sensors for Ca2+ ions measurements in biological fluids with sufficient selectivity and stability, a plastic membrane coating containing ionophores was applied on the nanorods. The sensor exhibited a linear response within the range of interest from 1 μM to 1 mM. This work demonstrates a simple technique for sensitive detection of Ca2+ ions by efficient transfer of the chemical response directly to a standard electronic component producing a low impedance signal.
Journal: Biosensors and Bioelectronics - Volume 24, Issue 11, 15 July 2009, Pages 3379–3382