کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
869383 | 909829 | 2008 | 6 صفحه PDF | دانلود رایگان |

The inability of surface plasmon resonance (SPR) spectroscopy to detect extremely small refractive index changes has hindered its applications in ultrasensitive DNA analysis. In this study we report a signal amplification strategy that uses DNA-templated polyaniline deposition, suitable for DNA hybridization analysis with charge neutral peptide nucleic acid (PNA) being probes. Under acidic conditions, protonated aniline monomers are adsorbed on DNA backbones through electrostatic interaction. The microenvironment provided by the DNA facilitates oxidative aniline polymerization initialized by H2O2 in the presence of horseradish peroxide. Under optimal conditions, the detection limit is lowered from 5 nM for conventional SPR detection to 0.1 pM. The significant sensitivity improvement is attributed to the in-situ polymer chain growth along DNA strands, which introduces drastic refractive index increases. This signal amplification approach does not involve secondary hybridization processes. The detection sensitivity obtained is much better than that of gold nanoparticle-based amplification involving a secondary hybridization process and labeled DNA detection probes.
Journal: Biosensors and Bioelectronics - Volume 23, Issue 11, 15 June 2008, Pages 1715–1720