کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
869481 | 909831 | 2006 | 8 صفحه PDF | دانلود رایگان |

This paper describes fabrication of a poly(dimethyl siloxane) (PDMS)-based chip to analyze multiple protein interactions utilizing glycidyl methacrylate (GMA) photopolymer for a site-specific immobilization of capture proteins in a closed system. First, using one direction channels of a PDMS mold having cross-channels, GMA micropads were prepared by photopolymerizing GMA solution by 365 nm light irradiation at predetermined positions. After the first mold was replaced with a second mold having higher height or directly without mold changing, capture proteins were allowed to be covalently immobilized onto the surface of the epoxide-activated GMA pads. Following immobilization, poly(ethylene glycol) diacrylate (PEG-DA) precursor was photopolymerized at specific regions to generate plugs for prevention of mixing between different sample injection channels, diminishing the need of a mold changing for sample injections. Final chip was assembled by connecting separated sample injection channels using a connector mold. The viability of this strategy was successfully demonstrated by simultaneous detection of two different antigen–antibody interactions.
Journal: Biosensors and Bioelectronics - Volume 22, Issue 5, 15 December 2006, Pages 613–620