کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
870117 | 909851 | 2007 | 8 صفحه PDF | دانلود رایگان |

A surface plasmon resonance (SPR) based flow chamber device was designed for real time detection of blood coagulation and platelet adhesion in platelet rich plasma (PRP) and whole blood. The system allowed the detection of surface interactions throughout the 6 mm length of the flow chamber. After deposition of thromboplastin onto a section of the sensor surface near the inlet of the flow chamber, coagulation was detected downstream of this position corresponding to a SPR signal of 7 to 8 mRIU (7 to 8 ng/mm2). A nonmodified control surface induced coagulation 3.5 times slower. Platelet adhesion to gold and fibrinogen coated surfaces in the magnitude of 1.25 and 1.66 mRIU was also shown with platelets in buffer, respectively. SPR responses obtained with PRP and whole blood on surfaces that were methylated or coated with von Willebrand factor (vWF), fibrinogen, or collagen, coincided well with platelet adhesion as observed with fluorescence microscopy in parallel experiments. The present SPR detection equipped flow chamber system is a promising tool for studies on coagulation events and blood cell adhesion under physiological flow conditions, and allows monitoring of short-range surface processes in whole blood.
Journal: Biosensors and Bioelectronics - Volume 23, Issue 2, 30 September 2007, Pages 261–268