کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
87510 159254 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China
چکیده انگلیسی

In all, 48 sites of subalpine coniferous forest that had undergone natural regeneration for 5–310 years were selected as study locations in the Southwest China. We compared species richness (S), plant diversity (Shannon–Wiener index, H′; Margalef index, R), and above- and below-ground ecosystem carbon (C) pools of six plant communities along a chronosequence of vegetation restoration, and we also examined evidence for a functional relationship between plant diversity and C storage. Our results showed that above-ground C increased significantly (over 52-fold), mainly due to the increase of C in aboveground living plants and surface litter. Soil organic carbon (SOC) content increased from the herb community type (dominated by Deyeuxia scabrescens, P1) to mixed forest type (dominated by Betula spp. and Abies faxoniana, P4), which constituted the main C pool of the system (63–89%), but decreased thereafter (communities P5–P6). The mean C stock in the whole ecosystem – trees, litter layer and mineral soil – ranged from 105 to 730 Mg C ha−1 and was especially high in the spruce forest community type (dominated by Picea purpurea, P6). On the other hand, the relationships between C stocks (soil, aboveground) and mean annual temperature or altitude were generally weak (P > 0.05). Moreover, we did not detect a relationship between S and aboveground C storage, while we found a significant negative relationship between H′, R and aboveground C storage. In addition, our experiment demonstrated that total root biomass and litter C/N ratio were significant functional traits influencing SOC, while S, R, and H′ had little effect. Path analysis also revealed that litter C/N ratio predominantly regulated SOC through changes in the quantity of microorganisms and soil invertase enzyme activity.


► The relationships between C stocks and mean annual temperature or altitude were weak.
► Total root biomass and litter C/N were significant functional traits influencing SOC.
► Litter C/N regulated SOC by changes in microorganisms and invertase enzyme activity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Forest Ecology and Management - Volume 262, Issue 3, 1 August 2011, Pages 361–369
نویسندگان
, , , , ,