کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8851829 | 1618772 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Quinclorac, a highly selective auxin herbicide, is widely used for controlling weeds in rice field. However, the residual quinclorac is toxic to many crops, vegetables, and aquatic animals, resulting in one of the major problems in crop rotation. Here, we investigated the degradation of quinclorac by strain AH-B, which was isolated from long-term quinclorac-contaminated soil using continuous circulating fluidized bed reactor and subjected to atmospheric and room temperature plasma mutation. Morphological examination, 16S rRNA gene sequencing, and phylogenetic analysis revealed that strain AH-B was Streptomyces sp. The quinclorac degradation efficiency of AH-B in liquid medium was 97.2% after 18 days when the initial quinclorac concentration was 20â¯mgâ¯Lâ1. The degradation products were 3-chloro-7-methoxy-8-quinoline-carboxylic, 3-chloro-7-methyl-8-quinoline-carboxylic, 3-chloro-7-oxyethyl-8-quinoline-carboxylic, and 3,7-dichloro-6-methyl-8-quinoline-carboxylic. The inoculum size, initial quinclorac concentration, pH, and temperature were found to affect quinclorac degradation efficiency of AH-B. High-performance liquid chromatography-electrospray ionization tandem mass spectrometry analysis revealed that quinclorac degradation by AH-B produced many products. In soil with initial quinclorac content of 1â¯mgâ¯kgâ1 dry soil, addition of AH-B resulted in 87.5% quinclorac degradation after 42 days, while that in the control (without AH-B) was 22.4%. Furthermore, microecological analysis using next-generation sequencing of 16S rRNA geneshowed that some bacterial species, such as Bacterioides and Proteobacteria, could survive in quinclorac-contaminated soil, while some bacteria, such as Firmicutes, were very sensitive to quinclorac. Besides, some fungal species, such as Basidiomycota, could also survive quinclorac-contamination. After 42 days, the diversity of bacteria and fungi in soil treated with AH-B was higher than that in the control, implying that bioaugmentation with strain AH-B could reduce quinclorac toxicity to microorganisms in soil.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 199, May 2018, Pages 210-217
Journal: Chemosphere - Volume 199, May 2018, Pages 210-217
نویسندگان
Zhe Lang, Dan Qi, Jianjiang Dong, Liwei Ren, Qifa Zhu, Weiwei Huang, Yongmin Liu, Diannan Lu,