کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8864773 1620478 2018 49 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Implementation of a gust front head collapse scheme in the WRF numerical model
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Implementation of a gust front head collapse scheme in the WRF numerical model
چکیده انگلیسی
Gust fronts are thunderstorm-related phenomena usually associated with severe winds which are of great importance in theoretical meteorology, weather forecasting, cloud dynamics and precipitation, and wind engineering. An important feature of gust fronts demonstrated through both theoretical and observational studies is the periodic collapse and rebuild of the gust front head. This cyclic behavior of gust fronts results in periodic forcing of vertical velocity ahead of the parent thunderstorm, which consequently influences the storm dynamics and microphysics. This paper introduces the first gust front pulsation parameterization scheme in the WRF-ARW model (Weather Research and Forecasting-Advanced Research WRF). The influence of this new scheme on model performances is tested through investigation of the characteristics of an idealized supercell cumulonimbus cloud, as well as studying a real case of thunderstorms above the United Arab Emirates. In the ideal case, WRF with the gust front scheme produced more precipitation and showed different time evolution of mixing ratios of cloud water and rain, whereas the mixing ratios of ice and graupel are almost unchanged when compared to the default WRF run without the parameterization of gust front pulsation. The included parameterization did not disturb the general characteristics of thunderstorm cloud, such as the location of updraft and downdrafts, and the overall shape of the cloud. New cloud cells in front of the parent thunderstorm are also evident in both ideal and real cases due to the included forcing of vertical velocity caused by the periodic collapse of the gust front head. Despite some differences between the two WRF simulations and satellite observations, the inclusion of the gust front parameterization scheme produced more cumuliform clouds and seem to match better with real observations. Both WRF simulations gave poor results when it comes to matching the maximum composite radar reflectivity from radar measurement. Similar to the ideal case, WRF model with the gust front scheme gave more precipitation than the default WRF run. In particular, the gust front scheme increased the area characterized with light precipitation and diminished the development of very localized and intense precipitation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Research - Volume 203, 1 May 2018, Pages 231-245
نویسندگان
, , ,