کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8875352 1623647 2018 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detecting sugarcane borer diseases using support vector machine
ترجمه فارسی عنوان
تشخیص بیماری های نیشکر با استفاده از دستگاه بردار
کلمات کلیدی
دانه های قندی، دستگاه برش قند شکارچی خاردار، جستجو گرید اعتبار سنجی متقابل،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی
Based on the fact that great labor of artificial selection was needed after the sugarcane seeds were cut by the sugarcane cutting machine, and there was a misjudgment of the sugarcane borer diseases. SVM (support vector machine) method was proposed in this study to detect the sugarcane borer diseases. With the machine vision technology, together with threshold segmentation, filling and corrosion operation to process the three images of the same sugarcane whose interval is 120°. The classification features, minimum average gray value and the corresponding minimum gray value were selected by adaptive threshold segmentation algorithm, and removed the region which area of 1. The study used radial basis function as the kernel function of SVM, and roughly selected the range of regularization parameters of C and kernel function parameter σ. Finally, it selected the optimal parameters by the grid search and the cross validation method to identify sugarcane with diseases. The test showed that correct rate of diseases and disease-free sugarcane is 96%, 95.83% for the test set, so the method can effectively complete the sugarcane borer diseases detection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing in Agriculture - Volume 5, Issue 1, March 2018, Pages 74-82
نویسندگان
, , , , ,