کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8879199 | 1624641 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Estimating alfalfa yield and nutritive value using remote sensing and air temperature
ترجمه فارسی عنوان
برآورد عملکرد یونجه و ارزش غذایی با استفاده از سنجش از راه دور و دمای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
NDFdNIRMSWMTCINDFPRIMSCSWIRADFVIs - VI هاacid detergent fiber - الیاف پاک کننده اسیدCanopy reflectance - بازتاب کانوپیPhotochemical reflectance index - شاخص بازتابی عکس شیمیاییnormalized difference vegetation index - شاخص تنوع گیاه شناسی نرمال شدهNDVI - شاخص نرمالشده تفاوت پوشش گیاهی neutral detergent fiber - فیبر مواد شوینده خنثیUtility - مطلوبیتNDLI - من هستمcrude protein - پروتئین خام
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم زراعت و اصلاح نباتات
چکیده انگلیسی
In-field estimation of alfalfa (Medicago sativa L.) yield and nutritive value can inform management decisions to optimize forage quality and production. However, acquisition of timely information at the field scale is limited using traditional measurements such as destructive sampling and assessment of plant maturity. Remote sensing technologies (e.g., measurement of canopy reflectance) have the potential to enable rapid measurements at the field scale. Canopy reflectance (350-2500â¯nm) and Light Detection and Ranging (LiDAR)-estimated canopy height were measured in conjunction with destructive sampling of alfalfa across a range of maturities at Rosemount, MN in 2014 and 2015. Sets of specific spectral wavebands were determined via stepwise regression to predict alfalfa yield and nutritive value and models were reduced by spectral range to improve utility. Cumulative growing degree units (GDUs) and canopy height were tested as model covariates. An alternative GDU calculation (GDUALT) using a temporally graduating base temperature was also tested against the traditional static base temperature. The inclusion of GDUALT increased prediction accuracy for all response variables by 9-17%. Models using a common set of seven wavebands, combined with GDUALT, explained 81-90% of the variability in yield, crude protein (CP), neutral detergent fiber (NDF), and NDF digestibility (NDFd; 48-h in-vitro), respectively. This research establishes potential for remote sensing measurements to be integrated with air temperature information to achieve rapid and accurate predictions of alfalfa yield and nutritive value at the field scale for optimized harvest management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Field Crops Research - Volume 222, 1 June 2018, Pages 189-196
Journal: Field Crops Research - Volume 222, 1 June 2018, Pages 189-196
نویسندگان
Reagan L. Noland, M. Scott Wells, Jeffrey A. Coulter, Tyler Tiede, John M. Baker, Krishona L. Martinson, Craig C. Sheaffer,