کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898428 1631380 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Subdifferentiable functions satisfy Lusin properties of class C1 or C2
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Subdifferentiable functions satisfy Lusin properties of class C1 or C2
چکیده انگلیسی
Let f:Rn→R be a function. Assume that for a measurable set Ω and almost every x∈Ω there exists a vector ξx∈Rn such that lim infh→0f(x+h)−f(x)−〈ξx,h〉|h|2>−∞.Then we show that f satisfies a Lusin-type property of order 2 in Ω, that is to say, for every ε>0 there exists a function g∈C2(Rn) such that Ln({x∈Ω:f(x)≠g(x)})≤ε. In particular every function which has a nonempty proximal subdifferential almost everywhere also has the Lusin property of class C2. We also obtain a similar result (replacing C2 with C1) for the Fréchet subdifferential. Finally we provide some examples showing that these kinds of results are no longer true for Taylor subexpansions of higher order.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 230, June 2018, Pages 1-12
نویسندگان
, , , ,