کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8899222 | 1631542 | 2018 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Rational dilation problems associated with constrained algebras
ترجمه فارسی عنوان
مشکلات دایمی عمدی مرتبط با جبر محدود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
A set Ω is a spectral set for an operator T if the spectrum of T is contained in Ω, and von Neumann's inequality holds for T with respect to the algebra R(Ω) of rational functions with poles off of Ωâ¾. It is a complete spectral set if for all râN, the same is true for Mr(C)âR(Ω). The rational dilation problem asks, if Ω is a spectral set for T, is it a complete spectral set for T? There are natural multivariable versions of this. There are a few cases where rational dilation is known to hold (eg, over the disk and bidisk), and some where it is known to fail, for example over the Neil parabola, a distinguished variety in the bidisk. The Neil parabola is naturally associated to a constrained subalgebra of the disk algebra C+z2A(D). Here it is shown that such a result is generic for a large class of varieties associated to constrained algebras. This is accomplished in part by finding a minimal set of test functions. In addition, an Agler-Pick interpolation theorem is given and it is proved that there exist Kaijser-Varopoulos style examples of non-contractive unital representations where the generators are contractions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 467, Issue 1, 1 November 2018, Pages 95-131
Journal: Journal of Mathematical Analysis and Applications - Volume 467, Issue 1, 1 November 2018, Pages 95-131
نویسندگان
Michael A. Dritschel, Batzorig Undrakh,