کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8899222 1631542 2018 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rational dilation problems associated with constrained algebras
ترجمه فارسی عنوان
مشکلات دایمی عمدی مرتبط با جبر محدود
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
A set Ω is a spectral set for an operator T if the spectrum of T is contained in Ω, and von Neumann's inequality holds for T with respect to the algebra R(Ω) of rational functions with poles off of Ω‾. It is a complete spectral set if for all r∈N, the same is true for Mr(C)⊗R(Ω). The rational dilation problem asks, if Ω is a spectral set for T, is it a complete spectral set for T? There are natural multivariable versions of this. There are a few cases where rational dilation is known to hold (eg, over the disk and bidisk), and some where it is known to fail, for example over the Neil parabola, a distinguished variety in the bidisk. The Neil parabola is naturally associated to a constrained subalgebra of the disk algebra C+z2A(D). Here it is shown that such a result is generic for a large class of varieties associated to constrained algebras. This is accomplished in part by finding a minimal set of test functions. In addition, an Agler-Pick interpolation theorem is given and it is proved that there exist Kaijser-Varopoulos style examples of non-contractive unital representations where the generators are contractions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 467, Issue 1, 1 November 2018, Pages 95-131
نویسندگان
, ,