| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8900321 | 1631560 | 2018 | 16 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A note on Hurwitz's inequality
												
											ترجمه فارسی عنوان
													یادداشتی در مورد نابرابری هایورویتس
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											چکیده انگلیسی
												Given a simple closed plane curve Î of length L enclosing a compact convex set K of area F, Hurwitz found an upper bound for the isoperimetric deficit, namely L2â4ÏFâ¤Ï|Fe|, where Fe is the algebraic area enclosed by the evolute of Î. In this note we improve this inequality finding strictly positive lower bounds for the deficit Ï|Fe|âÎ, where Î=L2â4ÏF. These bounds involve either the visual angle of Î or the pedal curve associated to K with respect to the Steiner point of K or the L2 distance between K and the Steiner disk of K. For compact convex sets of constant width Hurwitz's inequality can be improved to L2â4ÏFâ¤49Ï|Fe|. In this case we also get strictly positive lower bounds for the deficit 49Ï|Fe|âÎ. For each established inequality we study when equality holds. This occurs for those compact convex sets being bounded by a curve parallel to an hypocycloid of 3, 4 or 5 cusps or the Minkowski sum of this kind of sets.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 458, Issue 1, 1 February 2018, Pages 436-451
											Journal: Journal of Mathematical Analysis and Applications - Volume 458, Issue 1, 1 February 2018, Pages 436-451
نویسندگان
												Julià CufÃ, Eduardo Gallego, Agustà Reventós, 
											