| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8941778 | 1645031 | 2018 | 36 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Semi-supervised sparse feature selection via graph Laplacian based scatter matrix for regression problems
												
											ترجمه فارسی عنوان
													انتخاب ویژگی نزولی نیمه نظارت شده از طریق ماتریس پراکندگی مبتنی بر لاپلاس بر روی مشکلات رگرسیون
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												Semi-supervised feature selection, which exploits both labeled and unlabeled data to select the relevant features, has an important role in many real world applications. Most semi-supervised feature selection methods have been exclusively designed for classification problems. In this paper, a semi-supervised framework based on graph Laplacian and mixed convex and non-convex l2,p-norm (0â¯<â¯pâ¯â¤â¯1) regularization is proposed for regression problems. In the proposed framework, a semi-supervised graph Laplacain based scatter matrix constructed for regression problems is used to encode the label information of labeled data and the local structure of both labeled and unlabeled data. To solve the mixed convex and non-convex regularized l2,p-norm framework, a unified iterative algorithm is proposed. The convergence of the proposed unified algorithm is theoretically and experimentally proved. To evaluate the performance of the proposed framework for regression problems, we perform extensive experiments on different computational drug design regression datasets. The results demonstrate the superiority of the proposed framework in comparison with other feature selection methods in selecting the relevant features.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 468, November 2018, Pages 14-28
											Journal: Information Sciences - Volume 468, November 2018, Pages 14-28
نویسندگان
												Razieh Sheikhpour, Mehdi Agha Sarram, Elnaz Sheikhpour, 
											