| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8947424 | 864209 | 2018 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Pushing memory bandwidth limitations through efficient implementations of Block-Krylov space solvers on GPUs
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													شیمی
													شیمی تئوریک و عملی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The cost of the iterative solution of a sparse matrix-vector system against multiple vectors is a common challenge within scientific computing. A tremendous number of algorithmic advances, such as eigenvector deflation and domain-specific multi-grid algorithms, have been ubiquitously beneficial in reducing this cost. However, they do not address the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. Practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations. We present an implementation of the block Conjugate Gradient algorithm on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. As a representative case, we consider the domain of lattice quantum chromodynamics and present results for one of the fermion discretizations. Using the QUDA library as a framework, we demonstrate a 5Ã speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 233, December 2018, Pages 29-40
											Journal: Computer Physics Communications - Volume 233, December 2018, Pages 29-40
نویسندگان
												M.A. Clark, Alexei Strelchenko, Alejandro Vaquero, Mathias Wagner, Evan Weinberg,