کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8961785 1646520 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis
چکیده انگلیسی
Circular RNAs (circRNAs) are a novel class of non-coding RNAs generated from back splicing. Accumulating evidence has demonstrated their vital regulation in several biological processes and ocular diseases. However, the role of circRNAs in age-related cataract (ARC), the leading cause of visual impairment worldwide, is still unknown. CircRNA sequencing reveals that 101 circRNAs are differentially expressed between the capsules of transparent and ARC lenses, including 75 down-regulated circRNAs and 26 up-regulated circRNAs transcripts. Eight of 10 differentially expressed circRNAs are further verified by quantitative RT-PCRs. One highly conserved circRNA, circHIPK3, is significantly down-regulated in all cortical, nuclear and posterior subcapsular subtypes of ARC. The silencing of circHIPK3, but not HIPK3 mRNA, significantly accelerates apoptosis development upon oxidative stress and decreases cell viability and proliferation in primary cultured human lens epithelial cells (HLECs). The expression of α-SMA and vimentin was downregulated, while the expression of E-cadherin and ZO-1was upregulated, suggesting the repression of epithelial-mesenchymal transition after circHIPK3 knockdown. CircHIPK3 silencing increases miR-193a expression. miR-193a regulates CRYAA expression by targeting the binding site within the 3′UTR. Moreover, miR-193a decreases the viability and proliferation, and increases the apoptosis of HLECs upon oxidative stress. This study suggests that circRNAs are the potential regulators in cataractogenesis. CircHIPK3 regulates HLECs function through miR-193a-mediated CRYAA expression. This finding would provide a novel insight into the pathogenesis of ARC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 503, Issue 4, 18 September 2018, Pages 2277-2285
نویسندگان
, , , , , , , ,