کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9020796 1129720 2005 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of four different effects elicited by H2O2 in rat aorta
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Characterization of four different effects elicited by H2O2 in rat aorta
چکیده انگلیسی
Four main vascular effects of hydrogen peroxide (H2O2) were studied in intact and rubbed aortic rings from WKY rats. In rings partially precontracted with phenylephrine: 1-30 μM H2O2 induced an increase of tone, 100 μM H2O2 produced a transient contraction followed by a fast-developing endothelium-independent relaxation, and 0.3 mM H2O2 induced a fast-developing relaxation followed by a slow-developing endothelium-independent relaxation. Superoxide dismutase (SOD) or dimethyl sulfoxide (DMSO)/manitol did not significantly modify the H2O2 effects, while catalase suppressed them. Indomethacin abolished the increase of tone elicited by H2O2 and revealed a small endothelium-dependent relaxation, which was suppressed by NG-nitro-l-arginine (l-NA), high K+ or tetraethylammonium (TEA). TEA strongly inhibited the fast-developing relaxation while indomethacin, glybenclamide, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), cafeic acid or eicosatriynoic acid (ETI) did not affect the relaxation. In rings precontracted with 70 mM KCl, 1-100 μM H2O2 induced a small increase of tone and 0.3 mM a slow-developing relaxation. Catalase or Fe2+-EDTA/vitamin C suppressed the slow-developing relaxation while deferoxamine did not modify it. In rings partially precontracted with arachidonic acid, 1-30 μM H2O2 induced higher contractile effects than in rings partially precontracted with phenylephrine. H2O2 at 0.3 mM for one hour induced a persistent impairment on the reactivity of the rings and the release of lactate dehydrogenase. In summary, H2O2 produces: (1) contractions mediated by direct activation of cyclooxygenase; 2) endothelium-dependent relaxations related to activation of endothelial K+ channels and NO synthesis; 3) reversible endothelium-independent relaxations mediated by activation of smooth muscle K+ channels; and 4) irreversible endothelium-independent relaxations related to cellular damage, caused by H2O2 but not by hydroxyl radicals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Vascular Pharmacology - Volume 43, Issue 2, August 2005, Pages 128-138
نویسندگان
, ,