کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9192101 | 1186614 | 2005 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Expression profile of an operationally-defined neural stem cell clone
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
عصب شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Neural stem cells (NSCs) are the most primordial and least committed cells of the nervous system, the cells that exist before regional specification develops. Because immunocytochemically-detectable markers that are sufficiently specific and sensitive to define an NSC have not yet been fully defined, we have taken the strong view that, to be termed a “stem cell” in the nervous system-in contrast to a “progenitor” or “precursor” (whose lineage commitment is further restricted)-a single neuroectodermally-derived cell must fulfill an operational definition that is essentially similar to that used in hematopoiesis. In other words, it must possess the following functional properties: (1) “Multipotency”, i.e., the ability to yield mature cells in all three fundamental neural lineages throughout the nervous system-neurons (of all subtypes), astrocytes (of all types), oligodendrocytes-in multiple regional and developmental contexts and in a region and developmental stage-appropriate manner. (2) The ability to populate a developing region and/or repopulate an ablated or degenerated region of the nervous system with appropriate cell types. (3) The ability to be serially transplanted. (4) “Self-renewal”, i.e., the ability to produce daughter cells (including new NSCs) with identical properties and potential. Having identified a murine neural cell clone that fulfills this strict operational definition-in contrast to other studies that used less rigorous or non-operational criteria for defining an NSC (e.g., the “neurosphere” assay)-we then examined, by comparing gene expression profiles, the relationship such a cell might have to (a) a multipotent somatic stem cell from another organ system (the hematopoietic stem cell [HSC]); (b) a pluripotent stem cell derived from the inner cell mass and hence without organ assignment (an embryonic stem cell); (c) neural cells isolated and maintained primarily as neurospheres but without having been subjected to the abovementioned operational screen (“CNS-derived neurospheres”). ESCs, HSCs, and operationally-defined NSCs-all of which have been identified not only by markers but by functional assays in their respective systems and whose state of differentiation could be synchronized-shared a large number of genes. Although, as expected, the most stem-like genes were expressed by ESCs, NSCs and HSCs shared a number of genes. CNS-derived neurospheres, on the other hand, expressed fewer “stem-like” genes held in common by the other operationally-defined stem cell populations. Rather they displayed a profile more consistent with differentiated neural cells. (Genes of neural identity were shared with the NSC clone.) Interestingly, when the operationally-defined NSC clone was cultured as a neurosphere (rather than in monolayer), its expression pattern shifted from a “stem-like” pattern towards a more “differentiated” one, suggesting that the neurosphere, without functional validation, may be a poor model for predicting stem cell attributes because it consists of heterogeneous populations of cells, only a small proportion of which are truly “stem-like”. Furthermore, when operational definitions are employed, a common set of stem-like genes does emerge across both embryonic and somatic stem cells of various organ systems, including the nervous system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Neurology - Volume 194, Issue 2, August 2005, Pages 320-332
Journal: Experimental Neurology - Volume 194, Issue 2, August 2005, Pages 320-332
نویسندگان
Mark A. Parker, Julia K. Anderson, Deborah A. Corliss, Victoria E. Abraria, Richard L. Sidman, Kook In Park, Yang D. Teng, Douglas A. Cotanche, Evan Y. Snyder,