کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9500441 1337724 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
δ-invariants and their applications to centroaffine geometry
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
δ-invariants and their applications to centroaffine geometry
چکیده انگلیسی
We introduce the notion of δ-invariant for curvature-like tensor fields and establish optimal general inequalities in case the curvature-like tensor field satisfies some algebraic Gauss equation. We then study the situation when the equality case of one of the inequalities is satisfied and prove a dimension and decomposition theorem. In the second part of the paper, we apply these results to definite centroaffine hypersurfaces in Rn+1. The inequality is specified into an inequality involving the affine δ-invariants and the Tchebychev vector field. We show that if a centroaffine hypersurface satisfies the equality case of one of the inequalities, then it is a proper affine hypersphere. Furthermore, we prove that if a positive definite centroaffine hypersurface in Rn+1,n⩾3, satisfies the equality case of one of the inequalities, it is foliated by ellipsoids. And if a negative definite centroaffine hypersurface satisfies the equality case of one of the inequalities, then it is foliated by two-sheeted hyperboloids. Some further applications of the inequalities are also provided in this article.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 22, Issue 3, May 2005, Pages 341-354
نویسندگان
, , ,