کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9501319 | 1338406 | 2005 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Semialgebraic complexity of functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we study the rate of the best approximation of a given function by semialgebraic functions of a prescribed “combinatorial complexity”. We call this rate a “Semialgebraic Complexity” of the approximated function. By the classical Approximation Theory, the rate of a polynomial approximation is determined by the regularity of the approximated function (the number of its continuous derivatives, the domain of analyticity, etc.). In contrast, semialgebraic complexity (being always bounded from above in terms of regularity) may be small for functions not regular in the usual sense. We give various natural examples of functions of low semialgebraic complexity, including maxima of smooth families, compositions, series of a special form, etc. We show that certain important characteristics of the functions, in particular, the geometry of their critical values (Morse-Sard Theorem) are determined by their semialgebraic complexity, and not by their regularity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 21, Issue 1, February 2005, Pages 111-148
Journal: Journal of Complexity - Volume 21, Issue 1, February 2005, Pages 111-148
نویسندگان
Y. Yomdin,