کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9651069 | 666439 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
DE/EDA: A new evolutionary algorithm for global optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Differential evolution (DE) was very successful in solving the global continuous optimization problem. It mainly uses the distance and direction information from the current population to guide its further search. Estimation of distribution algorithm (EDA) samples new solutions from a probability model which characterizes the distribution of promising solutions. This paper proposes a combination of DE and EDA (DE/EDA) for the global continuous optimization problem. DE/EDA combines global information extracted by EDA with differential information obtained by DE to create promising solutions. DE/EDA has been compared with the best version of the DE algorithm and an EDA on several commonly utilized test problems. Experimental results demonstrate that DE/EDA outperforms the DE algorithm and the EDA. The effect of the parameters of DE/EDA to its performance is investigated experimentally.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 169, Issues 3â4, 1 February 2005, Pages 249-262
Journal: Information Sciences - Volume 169, Issues 3â4, 1 February 2005, Pages 249-262
نویسندگان
Jianyong Sun, Qingfu Zhang, Edward P.K. Tsang,