کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9657243 1441301 2005 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real number computation with committed choice logic programming languages
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Real number computation with committed choice logic programming languages
چکیده انگلیسی
As shown in [H. Tsuiki, Real number computation through gray code embedding, Theoretical Computer Science 284 (2002) 467], the real line can be embedded topologically in the set Σ⊥,1ω of infinite sequences of {0, 1, ⊥} containing at most one ⊥. Moreover, there is a nondeterministic multi-headed machine, called an IM2-machine, which operates on Σ⊥,1ω and which induces the standard notion of computation over the reals via this embedding. In this paper, we study how the behavior of an IM2-machine can be expressed in “real” programming languages. When we use a lazy functional language like Haskell and represent a sequence as an infinite list, we cannot express the behavior of an IM2-machine. However, when we use a logic programming language with guarded clauses and committed choice, such as Concurrent Prolog, PARLOG, and GHC (Guarded Horn Clauses), we can express the behavior of IM2-machines naturally and execute them on an ordinary computer. We show that GHC-computability implies IM2-computability but not vice versa when we consider functions defined on Σ⊥,1ω in general, but they coincide when we only consider functions defined on the reals. We give some GHC program examples, such as the conversions between Gray-code and the signed-digit representations, and the addition function on reals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Logic and Algebraic Programming - Volume 64, Issue 1, July 2005, Pages 61-84
نویسندگان
,