کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9662480 | 698924 | 2005 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An SQP feasible descent algorithm for nonlinear inequality constrained optimization without strict complementarity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a kind of nonlinear optimization problems with nonlinear inequality constraints are discussed, and a new SQP feasible descent algorithm for solving the problems is presented. At each iteration of the new algorithm, a convex quadratic program (QP) which always has feasible solution is solved and a master direction is obtained, then, an improved (feasible descent) direction is yielded by updating the master direction with an explicit formula, and in order to avoid the Maratos effect, a height-order correction direction is computed by another explicit formula of the master direction and the improved direction. The new algorithm is proved to be globally convergent and superlinearly convergent under mild conditions without the strict complementarity. Furthermore, the quadratic convergence rate of the algorithm is obtained when the twice derivatives of the objective function and constrained functions are adopted. Finally, some numerical tests are reported.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 49, Issues 2â3, JanuaryâFebruary 2005, Pages 223-238
Journal: Computers & Mathematics with Applications - Volume 49, Issues 2â3, JanuaryâFebruary 2005, Pages 223-238
نویسندگان
Jin-Bao Jian, Chun-Ming Tang,