کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
977084 | 933170 | 2009 | 6 صفحه PDF | دانلود رایگان |

Non-equilibrium molecular dynamics (NEMD) simulations have been performed for static electric fields for a range of positively charged spherical rutile–titania nanoparticles with radii of 1.5 to 2.9 nm for two different salt concentrations in water, in order to simulate electrophoresis directly. Using the observed limiting drag velocities, Helmholtz–Smoluchowski (HS) theory was used to estimate their ζζ potentials. These estimates were compared to values from numerical solution of the non-linear Poisson–Boltzmann (PB) equation for representative configurations of the nanoparticles, in addition to idealised analytic and Debye–Hückel (DH) solutions about spherical particles of the same geometry and charge state, for the given salt concentrations. It was found that reasonable agreement was obtained between the various approaches, with the NEMD-HS results some 15%–15% smaller than the numerical PB results for more highly charged nanoparticles.
Journal: Physica A: Statistical Mechanics and its Applications - Volume 388, Issue 19, 1 October 2009, Pages 4091–4096