کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9781 646 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
چکیده انگلیسی

The development of bioinspired or biomimetic materials is essential and has formed one of the most important paradigms in today's tissue engineering research. This paper reports a novel biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan (HAp/CTS) prepared by combining an in situ co-precipitation synthesis approach with an electrospinning process. A model HAp/CTS nanocomposite with the HAp mass ratio of 30 wt% was synthesized through the co-precipitation method so as to attain homogenous dispersion of the spindle-shaped HAp nanoparticles (ca. 100 × 30 nm) within the chitosan matrix. By using a small amount (10 wt%) of ultrahigh molecular weight poly(ethylene oxide) (UHMWPEO) as a fiber-forming facilitating additive, continuous HAp/CTS nanofibers with a diameters of 214 ± 25 nm had been produced successfully and the HAp nanoparticles with some aggregations were incorporated into the electrospun nanofibers. Further SAED and XRD analysis confirmed that the crystalline nature of HAp remains and had survived the acetic acid-dominant solvent system. Biological in vitro cell culture with human fetal osteoblast (hFOB) cells for up to 15 days demonstrated that the incorporation of HAp nanoparticles into chitosan nanofibrous scaffolds led to significant bone formation oriented outcomes compared to that of the pure electrospun CTS scaffolds. The electrospun nanocomposite nanofibers of HAp/CTS, with compositional and structural features close to the natural mineralized nanofibril counterparts, are of potential interest for bone tissue engineering applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 29, Issue 32, November 2008, Pages 4314–4322
نویسندگان
, , , , , ,