کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10231869 1373 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: The role of mixing statistics and frame shift of neighboring genes
ترجمه فارسی عنوان
ژنوم های باکتریایی که دارای ارتباطات طولانی مدت هستند ممکن است با زنجیره های کم مارکوف مدل سازی نشوند: نقش آمار مخلوط و تغییر فریم ژن های همسایه
کلمات کلیدی
ژنوم باکتریایی، تابع همبستگی نمایشگر، مدل مارکف، دومین بزرگترین مقدار خاص، هگزامر، دوره ای 10 تا 11 پایه، ناهمگونی، موقعیت کوردون،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی
We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 53, Part A, December 2014, Pages 15-25
نویسندگان
, , , ,