کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10304988 | 545932 | 2014 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A statistical methodology to improve accuracy in differentiating schizophrenia patients from healthy controls
ترجمه فارسی عنوان
یک روش آماری برای بهبود دقت در تشخیص بیماران مبتلا به اسکیزوفرنی از کنترل سالم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تجزیه و تحلیل منحنی مشخصه اپراتور گیرنده، تجزیه و تحلیل مولفه اصلی، جنون جوانی، دروازه حسی،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
روانپزشکی بیولوژیکی
چکیده انگلیسی
We present a methodology to statistically discriminate among univariate and multivariate indices to improve accuracy in differentiating schizophrenia patients from healthy controls. Electroencephalogram data from 71 subjects (37 controls/34 patients) were analyzed. Data included P300 event-related response amplitudes and latencies as well as amplitudes and sensory gating indices derived from the P50, N100, and P200 auditory-evoked responses resulting in 20 indices analyzed. Receiver operator characteristic (ROC) curve analyses identified significant univariate indices; these underwent principal component analysis (PCA). Logistic regression of PCA components created a multivariate composite used in the final ROC. Eleven univariate ROCs were significant with area under the curve (AUC) >0.50. PCA of these indices resulted in a three-factor solution accounting for 76.96% of the variance. The first factor was defined primarily by P200 and P300 amplitudes, the second by P50 ratio and difference scores, and the third by P300 latency. ROC analysis using the logistic regression composite resulted in an AUC of 0.793 (0.06), p<0.001 (CI=0.685-0.901). A composite score of 0.456 had a sensitivity of 0.829 (correctly identifying schizophrenia patients) and a specificity of 0.703 (correctly identifying healthy controls). Results demonstrated the usefulness of combined statistical techniques in creating a multivariate composite that improves diagnostic accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Psychiatry Research - Volume 216, Issue 3, 30 May 2014, Pages 333-339
Journal: Psychiatry Research - Volume 216, Issue 3, 30 May 2014, Pages 333-339
نویسندگان
Rosalind M. Peters, Klevest Gjini, Thomas N. Templin, Nash N. Boutros,